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Active Subspaces for
Dimension Reduction
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Abstract

Recent developments in the field of reduced order modeling - and in
particular, active subspace construction - have made it possible to
efficiently approximate complex models by constructing low-order
response surfaces based upon a small subspace of the original high
dimensional parameter space. These methods rely upon the fact that
the response tends to vary more prominently in a few dominant
directions defined by linear combinations of the original inputs,
allowing for a rotation of the coordinate axis and a consequent
transformation of the parameters. In this talk, we discuss a gradient
free active subspace algorithm that is feasible for high dimensional
parameter spaces where finite-difference techniques are impractical.
We illustrate an initialized gradient-free active subspace algorithm for
a neutronics example implemented with SCALEG.1, for input
dimensions up to 7700.




Dimension Reduction

The statistics community has been interested in dimension reduction
methods for regression problems for 25+ years

— Introduction of sliced inverse regression (SIR) and sliced average
variance estimation (SAVE) in 1991

Statistical formulation: Estimate the central subspace

- Regress response Y = f(X) on a random m-vector of inputs X

— Intersection of all subspaces S with the property that Y is conditionally
independent of X given the projection of X onto S

— Result is a set of n < m orthogonal linear combinations of X

[Xia, Annals of Statistics 2007] introduced nonparametric methods to
estimate S exhaustively

— Compared performance to SIR, SAVE, principal Hessian direction (PHD),
and minimum average variance estimation (MAVE)

[Cook et al., JASA 2009] introduced a likelihood method for
estimating S termed likelihood acquired directions (LAD)

— Compared performance to SIR, SAVE, and directional regression (DR)
— Assumes conditional normality but robust to non-normality
— Likelihood ratio statistic, AIC, BIC used to choose n




Active Subspaces

Motivation:

« Some UQ problems involve high-dimensional input spaces that present
challenges for standard surrogate and model calibration algorithms

— e.g. 7700 cross section perturbations in a PWR quarter fuel lattice
— 10k — 100k+ parameters possible in CIPS Challenge Problem

» Typically sensitivity analysis would substantially reduce this dimension as
most parameters have a relatively small influence on the Qols

» Popular active subspace methods seek to find a substantially reduced set
of parameters formed as linear combinations of the original parameters

— Conceptual similarities to statistical dimension reduction methods
— If possible identify a set of 100 or fewer active parameters

» Use gradients to identify active parameters if they are produced by the
code. Otherwise, gradient free approaches must be considered

— Active area of research

Goal: Using a new gradient free algorithm for active subspace
discovery, determine active parameters for use in surrogate
construction and model calibration




Active Subspace Construction

Note:

« QOutputs may vary significantly in only a
few “active” directions, which may be
linear combinations of inputs.

1

0.5
Example: y = exp(0.7x1 + 0.322) .
« Varies most in [0.7, 0.3] direction

-0.5
* No variation in orthogonal direction

-1

Strategy: -1 -0.5 0 0.5 1

X1

« Employ gradient-based or gradient-free techniques, in combination with
SVD or QR to construct active subspace.

« Employ active subspaces for:

- Linear Karhunen-Loeve expansion-based UQ

- Surrogate or reduced-order model construction

— Model calibration




Gradient-Based Active Subspace

Active Subspace: See [Constantine, SIAM 2015]. Consider
f=f(x), xe X CR™

and .
0 0
Vuf ) = |5 ]

Construct outer product

p(x) : distribution of input x parameters
C= [©ur ol

Partition eigenvalues: C = WAW?
Ay
A= [ A, ] W= W Wil

Rotated Coordinates:
y=W/{xcR" and z=W.lx e R""




Motivation

Results:

Derivative of f(x) in the direction w;

o [V (Fu) o) = A - A

* n can be chosen by looking for a "large” gap between A,, and A+,
such that A+4 + ... + A, is relatively “small”

(3) f(:c) > g(fo) g is a link function




Active and Central Subspaces

+ Suppose f(x) = g(y) for y = Wi @
m(f(x),z|y) = 7(g9(y), z|y)

= m(9(y)|y, ) m(x|y)
m(9(y)|y) m(x|y)

=7(f(x)|y) m(x|y)

 Inputs and output are therefore conditionally independent given the
active variables, and so the active subspace defined by the columns
of W, contains the central subspace




Estimation
Approximation via Monte Carlo:

1. Draw M samples { x; } independently from p(x)
2. For each x;, compute V4 f; = Vi f(x;)

3. Approximate | Iy

CrC=— ; (Vfi) (Vxfi)'

4. Compute the eigendecomposition C = WAW?

Steps 3 and 4 equivalent to computing the SVD of the gradient matrix

1 N PaN A
G = — [Vufi - Vifu] = WAYZV
m[ S fu

Error in estimated active subspace:

e = [|WAiW{ — WiW[||5 = ||[W{ Wa||

e < 4X10 0 is a user-specified tolerance for the
~ Ap — Apyq  eigenvalue estimates (used to choose M)




Order Determination

1. Gap-based

«  Stop at largest gap in eigenvalue spectrum
2. Error-based

. Specify error tolerance g, G = U AV2 VT

a) Draw a sequence of p standard Gaussian vectors { oy, ..., o, }
b) Let U,,x; be the first j columns of U

o Letel =10y/2/7 max ||(I—UUT)Guw|]

upp i=1,...,p

. Find smallest j for which &“ﬂpp < Etol
. Error bound holds with probability 1 — 10-»
3. PCA-based

. Stop at minimal dimension yielding variance explained in covariance matrix
formed from G exceeding user-specified threshold (e.g. 99%)

4. Response surface-based

« Use the minimal dimension required to reduce response surface error on a
validation dataset below a user-specified threshold (e.g. 0.01, 0.001)

Goal: Determine dimension of active subspace




Gradient Approximation for Large Input Spaces
« Utilized when finite difference approach to gradient approximation is
computationally prohibitive; e.g., SCALEG.1 with 7700 inputs.
 Construct ellipsoid where linearity is reasonable assumption.

« Maximize function values and gradient information using “great ellipsoid”
relations.

Iteration 1 Iteration 2 SRCASL B,




“Great Ellipsoid” Solution

« Consider a matrix C collecting h+1 input samples from the surface of
the unit hypersphere:

C:[w vy - vh}

« Collect the sampled output differences into a vectory:

T
y = [g(w) —g(0) g(vi)—g(0) --- g(va)—g(0)]
« The direction of steepest ascent within the column space of C is given
by: _
C(CTC) y
Umax —
\/ y' (CTC) vy

nced



SCALEG.1: High-Dimensional Example

Setup:

* Input Dimension: 7700

» Output ke ¢y
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Note: We cannot efficiently approximate all directional derivatives
required to approximate the gradient matrix. Requires an efficient

gradient approximation algorithm.
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SCALE®6.1: High-Dimensional Example

Setup:

* Input Dimension: 7700

SCALE Evaluations:

« Gradient-Based: 1000
* Initialized Adaptive Morris: 18,392

10%¢

O Gradient-Based
+ Initialized AM

+

—_

o
4
o

Magnitude
>

(0.20%)
a0 |-
° PI’OjeCted Finite-Difference: 1030“
7,701,000 0 50 100 150 200 250 300
Eigenvalue
Active Subspace Dimensions:
Gap PCA Error Tolerance

Method 0.7510.90 | 0.95 | 0.99 || 1072 | 107* | 10 | 107°
Gradient-Based 1 2 § 9 24 1 13 90 | 233
Initialized AM 1 1 1 1 2 1 2 2 2




SCALEG.1: High-Dimensional Example

Gradient-Based n=25 Initialized AM
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Improved Gradient Approximation

« Can the function evaluations utilized for gradient approximation be
selected more efficiently?

 Atiteration /, the direction of steepest ascent within a randomly
determined subspace M; (which also contains the direction of
steepest ascent from iteration i — 1 for i > 1) is determined

« For the assumed linear approximation, at iteration / the function does
not vary in the orthocomplement O; in M; of the direction of steepest
ascent

At iteration j, define a subspace S, spanned by the accumulated
orthocomplements from previous iterations (S, = span{O4, ..., O.4}),
and ensure the subspace M; in which the steepest ascent direction is
to be found is restricted to the orthocomplement of S;

* At most d iterations required to converge to the gradient:

d
Zdim(Mi) =m+d—1
i=1




Quality of Gradient Approximation

Consider a k-dimensional subspace defined by the column space of a
matrix M in which the gradient is currently approximated by z*. It can

be shown that
| Pre (Ve f) |

We assume the unknown normalized gradient vector z is uniformly
distributed on the unit sphere, and consider the distribution of the
cosine of the angle between the random quantities z and z+:

Tp
b = \/z M2 oy~ N(0,T,)

21~

s

The mean and standard deviation of ¢ are approximated as follows:

E[qﬁ]w\@,smqﬂz%\/m;’“




Quality of Gradient Approximation

* Uncertainty in error decreases with increasing input dimension
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Elliptic PDE: Moderate-Dimensional
Example

» Consider the following equation:

—V, - (a(s,x)Vu(s,a(s,xz))) =1, s €[0,1]°
ou

« Boundary conditions: u = 0 (left, top, bottom); e 0 on right (I',)
S1

* a(s, x) is taken to be a Iog-Gaussian second-order random field (m =

100):
log Z £Lj ﬁqbz )
* Response of interest: |
fle) = — [| wu(s,x)ds
T2| Jr,

« Standard finite element method used to discretize this elliptic problem,
producing f(x) and the adjoint-computed V f(x)




Elliptic PDE: Moderate-Dimensional
Example

Elliptic PDE

0.9 © New Initialization
' a Qld Initialization
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SCALEG.1: Moderate-Dimensional Example

Setup:

+ Material: Ugy®

» Cross-sections: X ¢(FE)

* Energy groups: 44

« Total input dimension: 44 1 :U02
2 : He
3 : Zirc4
* Output: k. ¢+ 4 : H20/Boron
Z%GI:/\SL ] e Sonsoryr Achanced



SCALEG.1: Moderate-Dimensional Example

SCALES®6.1: 44 Input Example
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Gradient-Free Active Subspaces
Observations:

* |f available, use gradient information to identify active subspaces.

* Many legacy codes do not calculate gradients. In these cases, gradient-
free active subspace discovery is required.

« For complex codes, strategies required to reduce computational effort.
Papers:
« A. Lewis, R.C. Smith and B. Williams (2016), “Gradient free active

subspace construction using Morris screening elementary effects,”
Computers and Mathematics with Applications, 72(6), 1603-1615.

« K.D. Coleman, A. Lewis, R.C. Smith, B. Williams, M. Morris and B.
Khuwaileh (2019), “Gradient-free construction of active subspaces for

dimension reduction in complex models with applications to neutronics,”
SIAM/ASA Journal on Uncertainty Quantification, 7(1), 117-142.

Present and Future Work:

 Integrate gradient approximation algorithm into Sandia’s Dakota
software.

« Continued investigation of response surfaces constructed from active
parameters in Bayesian model calibration applications.




